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Abstract

We present an approach to real-time person tracking in
crowded and/or unknown environments using multi-modal
integration. We combine stereo, color, and face detec-
tion modules into a single robust system, and show an ini-
tial application in an interactive, face-responsive display.
Dense, real-time stereo processing is used to isolate users
from other objects and people in the background. Skin-hue
classification identifies and tracks likely body parts within
the silhouette of a user. Face pattern detection discrimi-
nates and localizes the face within the identified body parts.
Faces and bodies of users are tracked over several tempo-
ral scales: short-term (user stays within the field of view),
medium-term (user exits/reenters within minutes), and long
term (user returns after hours or days). Short-term track-
ing is performed using simple region position and size cor-
respondences, while medium and long-term tracking are
based on statistics of user appearance. We discuss the fail-
ure modes of each individual module, describe our integra-
tion method, and report results with the complete system in
trials with thousands of users.
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1 Introduction

The creation of displays or environments which pas-
sively observe and react to people is an exciting challenge
for computer vision [4, 6]. Faces and bodies are central to
human communication and yet machines have been largely
blind to their presence in real-time, unconstrained environ-
ments.

Often, computer vision systems for person tracking ex-
ploit a single visual processing technique to locate and track
user features. These systems can be non-robust to real-
world conditions with multiple people and/or moving back-
grounds. Additionally, tracking is usually performed only

over a single, short time scale: a person model is typically
based only on an unbroken sequence of user observations,
and is reset when the user is occluded or leaves the scene
temporarily.

We have created a visual person tracking system which
achieves robust performance through the integration of mul-
tiple visual processing modalities and by tracking over mul-
tiple temporal scales. With each modality alone it is pos-
sible to track a user under optimal conditions, but each
also has, in our experience, substantial failure modes in un-
constrained environments. Fortunately these failure modes
are often independent, and by combining modules in sim-
ple ways we can build a system with overall robust perfor-
mance.

In the following sections we describe our tracking frame-
work and the three vision processing modalities used. We
then describe an initial application of our system: a face-
responsive, interactive video display. Finally we show the
results of our system when deployed with naive users, and
analyze both the qualitative success of the application and
the quantitative performance of our tracking algorithms.

2 Tracking framework

A person tracking system for interactive environments
has several desired criteria: it should operate in real-time,
be robust to multiple users and changing background, pro-
vide a relatively rich visual description of the users, and be
able to track people when they are occluded or momentarily
leave the scene. We achieve these goals through the use of
multi-modal integration and multi-scale temporal tracking.

We base our system on three primary visual processing
modules: depth estimation, color segmentation, and inten-
sity pattern classification (see Figure 1). As described in
more detail below, depth information is estimated using a
dense real-time stereo technique and allows easy segmen-
tation of the user from other people and background ob-
jects. An intensity-invariant color classifier detects regions
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Figure 1. System overview showing the rela-
tionship of each modality with detection and
short-term tracking, and with long-term track-
ing/identi�cation.

of flesh tone on the user and is used to identify likely body
part regions such as face and hands. A face detection mod-
ule is used to discriminate head regions from hands and
other tracked body parts.

Figure 2 shows the output of the three vision processing
modules. As a person tracker, each is individually fragile:
notebooks are indistinguishable from faces in range silhou-
ette, flesh color signs or clothes fool color-only trackers, and
face pattern detectors typically are slower and only work
with relatively canonical poses and expressions. However,
when integrated together these modules can yield robust,
fast tracking performance.

Tracking is performed in our system on three different
time-scales: short-range (frame to frame while the person
is visible), medium-range (when the person is momentar-
ily occluded or leaves the field of view for a few minutes),
and long range (when the person is absent for hours, days
or more.) Long-term tracking can be thought of as a per-
son identification task, where the database is formed from
the set of previous users. For short-term tracking we sim-
ply compute region correspondences specific to each pro-
cessing modality based on region position and size. Multi-
modal integration is performed using the history of short-
term tracked regions from each modality, yielding a repre-
sentation of the user’s body shape and face location.

For medium and long-range tracking, we rely on a sta-
tistical model of multi-modal appearance to resolve cor-
respondences between tracked users. In addition to body

shape and face location, and color of hair, skin, and clothes
is recorded at each time step. We record the average value
and covariance of represented features, and use them for
matching. For medium-term tracking, lighting constancy
and stable clothing color are assumed; for long-term track-
ing we adjust for changing lighting and do not include cloth-
ing in the match criteria.

In the next section, we discuss module specific process-
ing, including classification, segmentation/grouping, and
short-term tracking. Following that, we present our integra-
tion scheme, and correspondence method for medium and
long-term tracking.

3 Mode-specific processing

Pixel-wise classification, grouping and short-term track-
ing are performed independently in each modality. Stereo
processing outputs a user’s silhouette defined by range re-
gions, color processing yields a set of skin color regions
within range silhouette boundaries, and face processing re-
turns a list of detected frontal face patterns; we describe
each module in turn. Each mode also provides an inde-
pendent estimate of head location and performs short-term
tracking.

3.1 User silhouette from dense stereo

To compute a set of user silhouettes, we rely on a dense
real-time stereo system. Video from a pair of cameras is
used to estimate dense range using a technique based on the
census transform [8]; we have implemented the census al-
gorithm on a single PCI card, multi-FPGA reconfigurable
computing engine [9]. This stereo system is capable of
computing 24 stereo disparities on 320 by 240 images at
42 frames per second, or approximately 77 million pixel-
disparities per second. These processing speeds compare
favorably with other real-time stereo implementations such
as [3].

Our segmentation and grouping technique proceeds in
several stages of processing, as illustrated in Figure 3. We
first smooth the raw range signal to reduce the effect of low
confidence stereo disparities using a morphological closing
operator. We then compute the response of a gradient op-
erator on the smoothed range data and threshold at a criti-
cal value based on the observed noise level in our disparity
data. Connected components analysis is applied to these re-
gions of smoothly varying range. We return all connected
components whose area exceeds a minimum threshold.

The range processing module provides these user silhou-
ettes, as well as estimates of head location. A candidate
head is placed below the maxima of the range profile. Head
position is refined in the integration stage, as described be-
low.
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Figure 2. Output of vision processing modules: input image, face pattern detection output, connected
components recovered from stereo range data, and esh hue regions from skin hue classi�cation. Boxes
have been drawn on the faces of the two tracked users in the input image; the rightmost person in the
image is beyond the workspace of the system.

(a) (b)

(c) (d) (e)

Figure 3. Stereo range processing to extract user silhouettes. (a) left/right image pair. (b) raw disparity
computed using Census algorithm. (c) disparity after morphological smoothing. (d) regions of slowly
varying disparity. (d) silhouettes recovered after connected components grouping.
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Disparity estimation, segmentation, and grouping are re-
peated independently at each time step; range silhouettes
are tracked from frame to frame based on position and size
constancy. The centroid and size of each new range silhou-
ette is compared to silhouettes from the previous time step.
“Short-term” correspondences are indicated using a greedy
algorithm starting with the closest unmatched region; for
each new region the closest old region within a minimum
threshold is marked as the correspondence matches.

3.2 Skin color localization

Skin color is a useful cue for tracking people’s faces and
other body parts. We detect skin using a classification strat-
egy which matches skin hue but is largely invariant to in-
tensity or saturation, as this is robust to shading due to il-
lumination and/or the absolute amount of skin pigment in a
particular person.

We apply color segmentation processing to images ob-
tained from one camera. Each image is initially repre-
sented with pixels corresponding to the red, green, and blue
channels of the image, and is converted into a “log color-
opponent” space. This space can directly represent the ap-
proximate hue of skin color, as well as its log intensity
value. We convert(R;G;B) tuples into tuples of the form
(log(G); log(R)�log(G); log(B)�(log(R)+log(G))=2).
Skin color is detected using a classifier with an empirically
estimated Gaussian probability model of “skin” and “not-
skin” in the log color-opponent color space. When a new
pixel p is presented for classification, the likelihood ratio
P (p = skin)=P (p = non�skin) is computed as a classifi-
cation score. Our color representation is similar to that used
in [2], but we estimate our classification criteria from ex-
amples rather than apply hand-tuned parameters. For com-
putational efficiency at run-time, we precompute a lookup
table over all possible color values.

After the lookup table has been applied, segmentation
and grouping analysis are performed on the classification
score image. Similar to the range case, we use morpho-
logical smoothing, threshold above a critical value, and ap-
ply connected component computation. However, there is
one difference: before smoothing we apply the low-gradient
mask from therangemodality. This restricts color regions
to be grown only within the boundary of range regions; if
spurious background skin hue is present in the background
it will not adversely affect the shape of foreground skin
color regions.

As with range processing, classification, segmentation,
and grouping are repeated at each time step. Short-term
tracking is performed on recovered color regions based on
similar centroid position and region size. When a a color
region changes size dramatically, we check to see if two
regions merged, or if one region split into two. If so we

record the identity of the split or merged regions, to be used
in the integration stage as described below.

Skin color regions that are above the midline of their
associated range component, and which are appropriately
sized at the given depth to be heads, are labeled as candi-
date heads and passed to the integration phase.

3.3 Face pattern detection

To distinguish head from hands and other body parts, and
to localize the face within a region containing the head, we
use pattern recognition methods which directly model the
statistical appearance of faces based on intensity.

We based our implementation of this module on the
CMU face detector [7] library. This library implements
a neural network which models the appearance of frontal
faces in a scene, and is similar to the pattern recognition
approach described in [5]. Both methods are trained on a
structured set of examples of faces and non-faces.

Face detection is initially applied over the entire image;
when one or more detections are recorded, they are passed
directly as candidate head locations to the integration phase.
Short term tracking is implemented by focusing search in a
new frame within windows around the detected locations in
the previous frame. If a new detection is found within such a
window it is considered to be in short-term correspondence
with the previous detection; if no new detection is found
and the detection in the previous frame overlapped a color
or range region, then the face detection is updated to move
with that region (as long as it persists).

4 Integrated Tracking

Our integration method is designed to take advantage of
each module’s strengths: range is typically fast but coarse,
color is fast and prone to false positives, and face pattern de-
tection is slow and requires canonical pose and expression.
We place priority on face detection hits, when available, and
use color or range to update position from frame to frame.

For each range silhouette, we collect the range, color,
and face detection candidate head features. As described
above, when a candidate pattern detection head overlaps
with a range or color candidate head, it persists and follows
the range or color region. We record the relative offset of the
face detection head with respect to the range or color head,
and maintain that relationship in subsequent frames. This
has the desired effect of allowing face detection to discrim-
inate between head and hand regions in subsequent frames
even when there may not be another face detection for sev-
eral frames.

For each frame, we compute the location of a user’s head
on the range silhouette as follows: if a face detection candi-
date head is present, we return it; otherwise we return any
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location with overlapping range and color candidates, the
location of the range candidate, or the location of a color
candidate, in order of preference.

There is one special case in propagating face detection
candidate heads. If the two color regions split or merge
as described above, we take steps to allow the virtual face
detection candidate head to follow the appropriate color re-
gion. We assume that the face is stationary between frames
when deciding what color region to follow. If two regions
have merged, the virtual detection follows the merged re-
gion, with offset such that the face’s absolute position on
the screen is the same as the previous frame. If two regions
have split, the face follows the region closest to it’s position
in the previous frame. These heuristics are simple, but work
in many cases where users are intermittently touching their
face with their hands.

When the head location has been found, we update the
estimate of head size. We have found that color is a rel-
atively unreliable estimator of size; instead, we recompute
size based on the results of the face detector and the range
modules. When a face detection result has been found, we
use it to determine the real size of the face. If no face de-
tection hit has been found, we use an average model of real
face size.

Our system can be configured in two modes: single-
or multiple-person tracking. Singe-person mode is most
appropriate for interactive games or kiosks which are re-
stricted to a single user; multiple-person is more appropri-
ate for general surveillance and monitoring applications. In
single person mode, we return only a single range silhou-
ette; we initially choose the closest range region, and then
follow that region until it is no longer tracked in the short-
term.

5 Long-term tracking

When users are momentarily occluded or exit the scene,
short-term tracking will fail since position and size corre-
spondences in the individual modules are unavailable. To
track users over medium and long-term time scales, we
rely on statistical appearance models. Each visual pro-
cessing module computes an estimate of certain user at-
tributes, which are expected to be stable over longer time
periods. These attributes are averaged as long as the under-
lying range silhouette continues to be tracked in the short-
term, and used in a classification stage to establish medium
and long-term correspondences.

Like multi-modal person detection and tracking, multi-
modal person appearance classification is more robust than
classification systems based on a single data modality.
Height, color, and face pattern each offer independent clas-
sification data and are accompanied by similarly indepen-
dent failure modes. Although face patterns are perhaps

the most common data source for current passive person
classification methods, it is unusual to incorporate height
or color information in identification systems because they
do not provide sufficient discrimination to justify their use
alone. However, combined with each other and with face
patterns, height and color can provide important cues to dis-
ambiguate otherwise similar people, or help classify people
when only degraded data is available in other modes.

5.1 Observed attributes

In the range module, we estimate the height of the user
and use this as an attribute of identity. Height is obtained
by computing the median value of the highest point of the
a user silhouette in 3-D. In the color module, we compute
the average color of the skin and hair regions; we plan to
also add a histogram of clothing color. We define the hair
region to be those pixels above the face but on the range
silhouette; clothing can be defined as all other silhouette
pixels not labeled as skin or hair.

In the face detector, we record an image of the actual
face pattern wherever the detector records a hit. When a
region is identified as a face based on the face pattern detec-
tion algorithm, the face pattern (greyscale subimage) in the
target region is normalized and then passed to the classifi-
cation stage. For optimal classification, we want the scale,
alignment, and view of detected faces to be comparable. We
resize the pattern to normalize for size, and discard images
which are not in canonical pose or expression, which is de-
termined by normalized correlation with an average canon-
ical face.

For “medium-term” tracking, e.g., over seconds or min-
utes of occlusion or absence, we rely on all of the above at-
tributes. For “long-term” tracking, over hours or longer, we
cannot rely on attributes which are not invariant with time
of day or from day to day: we correct all color values with a
mean color shift to account for changing illumination, and
would exclude clothing color from the match computation.

5.2 Classification

In general, we compute statistics of these attributes while
users are being tracked over the short-term, and compare
against stored statistics of all previous tracked users.

When we observe a new person, we see if there is a pre-
viously tracked individual which could have generated the
current observations. We find the previous individual most
likely to have generated the new observations; if this proba-
bility is above a minimum threshold, we label the currently
tracked region as being in correspondence with the previous
individual. We integrate likelihood over time and modality:
at timet, we find the identity estimate

u� = argmax
j

P (Uj j!) (1)
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Figure 4. Display and viewing geometry:
cameras and video-display share optical axis
through a half-silvered mirror.

where

P (Uj j!) = P (Uj jF0; :::; Ft; H0; :::; Ht; C0; :::Ct) (2)

whereFi,Hi, andCi are the face pattern, height, and color
observations at timei, andUj are the saved statistics for
personj. We restart time att = 0 when a new range sil-
houette is tracked. For the purposes of this discussion we
assumeP (Uj) is uniform across users. With Bayes rule
and the assumption of modality independence, we have:

u� = argmax
j

( P (F0; :::; FtjUj)

P (H0; :::; HtjUj)P (C0; :::; CtjUj) ) (3)

Since our observations are independent of the observed
noise in our sensor and segmentation routines, the posterior
probabilities at different times may be considered indepen-
dent. With this we can incrementally compute probability
in each modality:

P (F0; :::; FtjUj) = P (F0; :::; Ft�1jUj)P (FtjUj) (4)

and similarly for range and color data.
We collect mean and covariance data for the observed

user color data, and mean and variance of user height; the
likelihoodsP (FijUj) andP (CijUj) are computed assum-
ing a Gaussian density model. For face pattern data, we
store the size- and position-normalized mean pattern for
each user, and approximateP (FtjCp) with an empirically
determined density which is a function of the normalized
correlation ofFt with the the mean pattern for personj.

6 A Real-time Virtual Mirror Display

Our initial application of our integrated, multi-modal
visual person tracking framework is to create a face-
responsive visual display. We construct a video display

where cameras observe the user from the same optical axis
as used by the display, and send estimates of the 3-D head
position of observers of the screen to the application pro-
gram. One application we have explored using this display
is an interactive graphics experience in which users’ faces
are distorted in real-time. The effect is a virtual fun-house
mirror, but in which only the face regions are distorted.

We create a virtual mirror by placing cameras so that
they share the same optical axis as a video display, using
a half-silvered mirror to merge the two optical paths. The
cameras view the user through a 45-degree half mirror, so
that the user can view a video monitor while also looking
straight into (but not seeing) the cameras. Video from one
camera is displayed on the monitor after the application of
various computer graphics distortion effects, so as to cre-
ate a virtual mirror effect. Figure 4 shows the display and
viewing geometry of our apparatus. Using video texture
mapping and the OpenGL graphics system, we have im-
plemented graphics methods to distort faces on the screen
using one of the following special effects: spherical ex-
pansion, spherical shrinking, swirl, lateral expansion, and
a vertical melting effect. This creates a novel and entertain-
ing interactive visual experience where users get immediate
visual feedback from their tracked faces.

Our system is currently implemented using three com-
puter systems (one PC, two SGI O2), a large NTSC video
monitor, stereo video cameras, a dedicated stereo computa-
tion PC board, and the half-mirror imaging apparatus. The
full tracking system, including all vision and graphics pro-
cessing, runs at approximately 12Hz.

7 Results

We first demonstrated our system at the SIGGRAPH
Conference from August 3-8, 1997 [1]. An estimated 5000
people over 6 days used our system (approximately two new
users per minute, over 42 hours of operation). The goal of
the system in this application was to identify the 3-D posi-
tion and size of a single user’s head in the scene, and apply a
distortion effect in real-time only over the region of the im-
age containing the user’s face. The distorted image was then
displayed on the virtual mirror screen. The system tracked
the user while he or she was in the frame, and then switched
to a new user.

Qualitatively, the system was a complete success. Our
tracking results were able to localize video distortion ef-
fects on the user’s face, and overall the system was inter-
esting and fun for people to use. Figure 6 shows a typical
final image displayed on the virtual mirror. The system per-
formed well with both single users and crowded conditions;
the background environment was quite visually noisy, with
many spurious lighting effects being randomly projected
throughout the conference hall, including onto the people
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Figure 5. Color/Range stills of virtual mirror users collected during the SIGGRAPH '97 demonstration.
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Figure 6. Example distortion output from vir-
tual mirror application.

Modules Enabled SIGGRAPH data Lab data Overall
Color Range Patternp p p

97% 96% 97%p p
97% 95% 96%p p
97% 93% 95%p
97% 90% 94%p p
92% 93% 92%p
90% 89% 90%p

22%y 80% 44%

Table 1. Face detection and localization results
on SIGGRAPH and Lab datasets using di�er-
ent combinations of input modules, ordered by
increasing error rate. (y) The faces in the
SIGGRAPH dataset were smaller than the size
range the pattern module was trained to de-
tect.

being tracked by our system.

7.1 Evaluation

We quantitatively evaluated the performance of our sys-
tem using three off-line datasets: a set of stills captured
at SIGGRAPH to evaluate detection performance, a set of
stills of users in our laboratory, and a set of appearance
statistics gathered from users in our laboratory who inter-
acted with the system over several days. (Unfortunately
we were not able to obtain observations of the same users
across multiple days at the SIGGRAPH demonstration.)

We collected stills of users interacting with our system

every 15 seconds over a period of 3 hours at the SIGGRAPH
demonstration. At each sample point we captured both a
color image of the scene and a greyscale image of the out-
put of the range module after disparity smoothing. We
discarded images with no users present, yielding approx-
imately 300 registered color/range pairs. Figure 5 shows
examples of the collected stills. We also collected a sim-
ilar set of approximately 200 registered range/color stills
of users of the system while on display in our laboratory,
similar to the images in Figures 2 and 3(a). Table 1 sum-
marizes the single-person detection results we obtained on
these test images. A correct match was defined when the
corners of the estimated face region were sufficiently close
to manually entered ground truth (within1

4
of the face size).

Overall, when all modules were functioning, we achieved a
success rate of97%; when the color and/or face detection
module was removed, performance was still above 93%, in-
dicating the power of the range cue for detecting likely head
locations.

To evaluate our longer term tracking performance we
used statistics gathered from25 people in our laboratory
who visited our display several times on different days.
People’s hairstyle, clothing, and the exterior illumination
conditions varied between the times data were collected.
We tested whether our system was able to correctly identify
users when they returned to the display. In general, our re-
sults were better for medium term tracking (intra-day) than
for long term (inter-day) tracking, as would be expected.
Table 2 shows the extended tracking results: the correct
classification percentage is shown for each modality and
for the combined observations from all modes. This table
reflects the recognition rate using all of the data from each
short-term tracking session: on average, users were tracked
for 15 seconds before short-term tracking failed or they ex-
ited the workspace.

By integrating modes we were able to correctly estab-
lish correspondences between tracked users in all of the
medium-term cases, which typically involved temporal gaps
between 10 and 100 seconds. In the long-term cases, which
typically reflected gaps of one day, integrated performance
was87%. A more complete description of medium- and
long-term performance is shown in Figure 7 and Figure 10,
respectively. These figures show the recognition rate vs
rank threshold, i.e., the percentage of time the correct per-
son was above a given rank in the ordered likelihood list of
predicted users. We also measured our performance over
time: Figures 8 and 11 compare the performance versus
rank threshold at 4 different times during each testing ses-
sion. Here we show only the multi-modal results; as ex-
pected, identification becomes more reliable over time as
more data is collected. Figures 9 and 12 show the rank of the
correct person over time, averaged across all test sessions;
correct identification (average rank equals one) is almost al-
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Performance Medium-term Long-term
(intra-day) (inter-day)

Height 44% 20%
Color 84% 63%
Face pattern 84% 67%
Multi-modal 100% 87%

Table 2. Extended tracking performance: cor-
rect identi�cation rate at end of session.

ways achieved within one second in the medium-term case,
and within three seconds in the long-term case.

7.2 Discussion

We draw two main conclusions from the detection re-
sults; first, that range data is a powerful cue to detecting
heads in complex scenes. Second, integration is useful: in
almost every case, the addition of modules improved system
performance. Performance was generally high, but individ-
ual module results varied considerably across datasets. In
particular the face pattern module fared relatively poorly on
the SIGGRAPH dataset. We believe that this is largely due
to the small size and poor illumination of many of the faces
in these images. Additionally, in both datasets our appli-
cation encouraged people to make exaggerated expressions,
which was beyond the scope of the training for this module.

In contrast, for extended tracking it is clear from these
results that the face pattern is the most valuable of the three
modes when we consider all the data available during the
session. Face pattern data is most discriminating at theend
of the test session; however, the other modalities are dom-
inant early in the session. The face detection module op-
erates more slowly than the other modes, so the face pat-
tern data is not available immediately and accumulates at a
slower rate. Therefore, in the first few seconds the overall
performance of the extended tracking system is due primar-
ily to color and height data, and far exceeds the performance
based on face pattern alone.

8 Conclusion

We have demonstrated a system which can respond to
a user’s face in real-time using completely passive and
non-invasive techniques. Robust performance is achieved
through the integration of three key modules: depth estima-
tion to eliminate background effects, color classification for
fast tracking, and pattern detection to discriminate the face
from other body parts. We use descriptions of the user com-
puted from the same modalities to track over longer time
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Figure 7. Medium-term tracking: performance
vs rank threshold, results for each modality sep-
arately and then in combination.
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Figure 8. Medium-term tracking: multi-modal
performance vs rank threshold at 4 di�erent
time samples during a session.

scales when the user is occluded or leaves the scene. Our
system has application in interactive entertainment, telep-
resence/virtual environments, and intelligent kiosks which
respond selectively according to the presence, pose, and
identity of a user. We hope these and related techniques can
eventually balance the I/O bandwidth between typical users
and computer systems, so that they can control complicated
virtual graphics objects and agents directly with their own
expression.
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Figure 10. Long-term tracking: performance vs
rank threshold, results for each modality sepa-
rately and then in combination.
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Figure 12. Long-term tracking: Average rank
of correct person over time.
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